Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Gut ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740509

RESUMO

OBJECTIVE: To decipher the mechanisms by which the major human milk oligosaccharide (HMO), 2'-fucosyllactose (2'FL), can affect body weight and fat mass gain on high-fat diet (HFD) feeding in mice. We wanted to elucidate whether 2'FL metabolic effects are linked with changes in intestinal mucus production and secretion, mucin glycosylation and degradation, as well as with the modulation of the gut microbiota, faecal proteome and endocannabinoid (eCB) system. RESULTS: 2'FL supplementation reduced HFD-induced obesity and glucose intolerance. These effects were accompanied by several changes in the intestinal mucus layer, including mucus production and composition, and gene expression of secreted and transmembrane mucins, glycosyltransferases and genes involved in mucus secretion. In addition, 2'FL increased bacterial glycosyl hydrolases involved in mucin glycan degradation. These changes were linked to a significant increase and predominance of bacterial genera Akkermansia and Bacteroides, different faecal proteome profile (with an upregulation of proteins involved in carbon, amino acids and fat metabolism and a downregulation of proteins involved in protein digestion and absorption) and, finally, to changes in the eCB system. We also investigated faecal proteomes from lean and obese humans and found similar changes observed comparing lean and obese mice. CONCLUSION: Our results show that the HMO 2'FL influences host metabolism by modulating the mucus layer, gut microbiota and eCB system and propose the mucus layer as a new potential target for the prevention of obesity and related disorders.

2.
Microbiol Spectr ; : e0413523, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38687061

RESUMO

Perinatal and early-life factors reported to affect risk of allergic diseases may be mediated by changes in the gut microbiota. Here, we explored the associations between the infant gut microbiota and allergic morbidity in childhood until 13 years of age in a subgroup of the FLORA probiotic intervention cohort. A mixture of four probiotic strains with galacto-oligosaccharides was administrated to the mothers from the 36th week of the pregnancy and later to their infants until 6 months of age. The infants were monitored for the manifestations of atopic eczema, food allergy, allergic rhinitis, and asthma by a pediatrician at 2 and 5 years of age; the allergic status was subsequently verified by a questionnaire at 10 and 13 years of age. The fecal microbiota at 3 months was profiled by 16S rRNA amplicon sequencing targeting the V3-V4 region, with and without adjusting for potentially important early-life factors. Overall, the positive diagnosis for allergic rhinitis between 2 and 13 years was associated with microbiota composition both in non-adjusted and adjusted models. This association was more pronounced in children born to one parent with confirmed atopic diseases compared to those who had two atopic parents and was characterized by a lower relative abundance of Bifidobacterium and Escherichia/Shigella spp. and a higher proportion of Bacteroides. While the probiotic and galacto-oligosaccharides intervention in the entire cohort was previously shown to reduce the prevalence of eczema to a certain extent, no associations were found between the 3-month gut microbiota and childhood eczema in the studied sub-cohort.IMPORTANCEAllergic diseases have increased in prevalence during the past decades globally. Although probiotics have been considered a promising strategy for preventing certain allergy related symptoms, studies connecting the infant gut microbiota and later life allergic morbidity in various populations remain limited. The present study supports an association between the infant microbiota and allergic morbidity after first years of life, which has been rarely examined.CLINICAL TRIALSRegistered at ClinicalTrials.gov (NCT00298337).

3.
Gut Pathog ; 16(1): 20, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38581020

RESUMO

BACKGROUND: Intestinal botulism is primarily reported in small babies as a condition known as infant botulism. The condition results from the ingestion of environmental or foodborne spores of botulinum neurotoxin (BoNT) producing Clostridia, usually Clostridium botulinum, and subsequent spore germination into active botulinum neurotoxinogenic cultures in the gut. It is generally considered that small babies are susceptible to C. botulinum colonization because of their immature gut microbiota. Yet, it is poorly understood which host factors contribute to the clinical outcome of intestinal botulism. We previously reported a case of infant botulism where the infant recovered clinically in six weeks but continued to secrete C. botulinum cells and/or BoNT in the feces for seven months. CASE PRESENTATION: To further understand the microbial ecology behind this exceptionally long-lasting botulinum neurotoxinogenic colonization, we characterized the infant fecal microbiota using 16S rRNA gene amplicon sequencing over the course of disease and recovery. C. botulinum could be detected in the infant fecal samples at low levels through the acute phase of the disease and three months after recovery. Overall, we observed a temporal delay in the maturation of the infant fecal microbiota associated with a persistently high-level bifidobacterial population and a low level of Lachnospiraceae, Bacteroidaceae and Ruminococcaceae compared to healthy infants over time. CONCLUSION: This study brings novel insights into the infant fecal composition associated with intestinal botulism and provides a basis for a more systematic analysis of the gut microbiota of infants diagnosed with botulism. A better understanding of the gut microbial ecology associated with infant botulism may support the development of prophylactic strategies against this life-threatening disease in small babies.

4.
Biomed Pharmacother ; 174: 116561, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38593705

RESUMO

Pectin and its derivatives have been shown to modulate immune signaling as well as gut microbiota in preclinical studies, which may constitute the mechanisms by which supplementation of specific pectic polysaccharides confers protection against viral respiratory infections. In a double-blind, placebo-controlled rhinovirus (RV16) challenge study, healthy volunteers were randomized to consume placebo (0.0 g/day) (N = 46), low-dose (0.3 g/day) (N = 49) or high-dose (1.5 g/day) (N = 51) of carrot derived rhamnogalacturonan-I (cRG-I) for eight weeks and they were subsequently challenged with RV-16. Here, the effect of 8-week cRG-I supplementation on the gut microbiota was studied. While the overall gut microbiota composition in the population was generally unaltered by this very low dose of fibre, the relative abundance of Bifidobacterium spp. (mainly B. adolescentis and B. longum) was significantly increased by both doses of cRG-1. Moreover, daily supplementation of cRG-I led to a dose-dependent reduction in inter- and intra-individual microbiota heterogeneity, suggesting a stabilizing effect on the gut microbiota. The severity of respiratory symptoms did not directly correlate with the cRG-I-induced microbial changes, but several dominant groups of the Ruminococcaceae family and microbiota richness were positively associated with a reduced and hence desired post-infection response. Thus, the present results on the modulation of the gut microbiota composition support the previously demonstrated immunomodulatory and protective effect of cRG-I during a common cold infection.


Assuntos
Suplementos Nutricionais , Microbioma Gastrointestinal , Voluntários Saudáveis , Pectinas , Humanos , Pectinas/administração & dosagem , Pectinas/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Masculino , Adulto , Método Duplo-Cego , Feminino , Adulto Jovem , Rhinovirus/efeitos dos fármacos , Pessoa de Meia-Idade , Fezes/microbiologia , Bifidobacterium/efeitos dos fármacos
5.
J Biol Chem ; 299(11): 105335, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37827291

RESUMO

Hepatoma-derived growth factor (HDGF) overexpression and uncontrolled reactive oxygen species (ROS) accumulation are involved in malignant transformation and poor prognosis in various types of cancer. However, the interplay between HDGF and ROS generation has not been elucidated in hepatocellular carcinoma. Here, we first analyzed the profile of HDGF expression and ROS production in newly generated orthotopic hepatomas by ultrasound-guided implantation. In situ superoxide detection showed that HDGF-overexpressing hepatomas had significantly elevated ROS levels compared with adjacent nontumor tissues. Consistently, liver tissues from HDGF-deficient mice exhibited lower ROS fluorescence than those from age- and sex-matched WT mice. ROS-detecting fluorescent dyes and flow cytometry revealed that recombinant HDGF (rHDGF) stimulated the production of superoxide anion, hydrogen peroxide, and mitochondrial ROS generation in cultured hepatoma cells in a dose-dependent manner. In contrast, the inactive Ser103Ala rHDGF mutant failed to promote ROS generation or oncogenic behaviors. Seahorse metabolic flux assays revealed that rHDGF dose dependently upregulated bioenergetics through enhanced basal and total oxygen consumption rate, extracellular acidification rate, and oxidative phosphorylation in hepatoma cells. Moreover, antioxidants of N-acetyl cysteine and MitoQ treatment significantly inhibited HDGF-mediated cell proliferation and invasive capacity. Genetic silencing of superoxide dismutase 2 augmented the HDGF-induced ROS generation and oncogenic behaviors of hepatoma cells. Finally, genetic knockdown nucleolin (NCL) and antibody neutralization of surface NCL, the HDGF receptor, abolished the HDGF-induced increase in ROS and mitochondrial energetics. In conclusion, this study has demonstrated for the first time that the HDGF/NCL signaling axis induces ROS generation by elevating ROS generation in mitochondria, thereby stimulating liver carcinogenesis.


Assuntos
Carcinoma Hepatocelular , Animais , Camundongos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Espécies Reativas de Oxigênio , Carcinogênese/genética
6.
Adv Food Nutr Res ; 106: 241-274, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37722774

RESUMO

Against the backdrop of the global protein transition needed to remain within planetary boundaries, there is an influx of plant-based meat alternatives that seek to approximate the texture, flavor and/or nutrient profiles of conventional animal meat. These novel plant-based meat alternatives, enabled by advances in food technology, can be fundamentally different from the whole-plant foods from which they are derived. One of the reasons is the necessity to use food additives on various occasions, since consumers' acceptance of plant-based meat products primarily depends on the organoleptic properties. Consequently, a high degree of heterogeneity in formulation and nutritional profiles exists both within and between product categories of plant-based meat alternatives with unknown effects on several aspects of human health. This is further complicated by the differences in digestibility and bioavailability between proteins from animal and plant sources, which have a profound impact on colonic fermentation, nutritional adequacy and potential health effects. On the other hand, emerging strategies provide opportunities to develop affordable, delicious and nutritious plant-based meat alternatives that align with consumer interests.


Assuntos
Produtos da Carne , Estado Nutricional , Animais , Humanos , Carne , Aditivos Alimentares , Nutrientes
7.
Mol Nutr Food Res ; 67(20): e2300201, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37650878

RESUMO

SCOPE: While previously considered inert, recent studies suggest lignin metabolism with unknown metabolic fates is occurring in the gastrointestinal tract of several animal models. This study focuses on analyzing the potential metabolites of lignin. METHODS AND RESULTS: The diets of rats include relatively pure birch glucuronoxylan (pureGX) with residual lignin or lignin-rich GX (GXpoly) in their diet. Nuclear magnetic spectroscopy of the lignin isolated from the GXpoly-fed rats fecal sample shows high alteration in chemical structure, whereas lignin-carbohydrate complexes (LCCs) are enriched in fecal samples from the pureGX group. Moreover, the increased syringyl-to-guaiacyl (S/G) ratio suggests that lignin G-units are predominantly metabolized based on pyrolysis gas chromatography-mass spectrometry (pyr-GC/MS). The presence of small phenolic metabolites identified in urine samples of the GXpoly group, for example, ferulic and sinapic acids, their sulfate and glucuronide derivatives, and 4-sulfobenzylalcohol, suggests that the small fragmented lignin metabolites in the large intestine enter the plasma, and are further processed in the liver. Finally, the relative abundances of polyphenol-degrading Enterorhabdus and Akkermansia in the gut microbiota are associated with lignin metabolism. CONCLUSION: These findings give further evidence to lignin metabolism in the gut of nonruminants and provide insight to the potential microbes and metabolic routes.


Assuntos
Betula , Lignina , Ratos , Animais , Lignina/química , Lignina/metabolismo , Betula/metabolismo , Fibras na Dieta , Xilanos
8.
Front Endocrinol (Lausanne) ; 14: 1178155, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37305030

RESUMO

Globally, excess weight during childhood and adolescence has become a public health crisis with limited treatment options. Emerging evidence suggesting the involvement of gut microbial dysbiosis in obesity instills hope that targeting the gut microbiota could help prevent or treat obesity. In pre-clinical models and adults, prebiotic consumption has been shown to reduce adiposity partially via restoring symbiosis. However, there is a dearth of clinical research into its potential metabolic benefits in the pediatric population. Here, we provide a succinct overview of the common characteristics of the gut microbiota in childhood obesity and mechanisms of action of prebiotics conferring metabolic benefits. We then summarize available clinical trials in children with overweight or obesity investigating the effects of prebiotics on weight management. This review highlights several controversial aspects in the microbiota-dependent mechanisms by which prebiotics are thought to affect host metabolism that warrant future investigation in order to design efficacious interventions for pediatric obesity.


Assuntos
Obesidade Infantil , Criança , Adolescente , Adulto , Humanos , Obesidade Infantil/epidemiologia , Obesidade Infantil/prevenção & controle , Prebióticos , Sobrepeso , Adiposidade , Disbiose/epidemiologia , Disbiose/prevenção & controle
9.
Microbiol Spectr ; 11(3): e0374422, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37022154

RESUMO

Small-scale studies investigating the relationship between pigs' intestinal microbiota and growth performance have generated inconsistent results. We hypothesized that on farms under favorable environmental conditions (e.g., promoting sow nest-building behavior, high colostrum production, low incidence of diseases and minimal use of antimicrobials), the piglet gut microbiota may develop toward a population that promotes growth and reduces pathogenic bacteria. Using 16S rRNA gene amplicon sequencing, we sampled and profiled the fecal microbiota from 170 individual piglets throughout suckling and postweaning periods (in total 670 samples) to track gut microbiota development and its potential association with growth. During the suckling period, the dominant genera were Lactobacillus and Bacteroides, the latter being gradually replaced by Clostridium sensu scricto 1 as piglets aged. The gut microbiota during the nursery stage, not the suckling period, predicted the average daily growth (ADG) of piglets. The relative abundances of SCFA-producing genera, in particular Faecalibacterium, Megasphaera, Mitsuokella, and Subdoligranulum, significantly correlated with high ADG of weaned piglets. In addition, the succession of the gut microbiota in high-ADG piglets occurred faster and stabilized sooner upon weaning, whereas the gut microbiota of low-ADG piglets continued to mature after weaning. Overall, our findings suggest that weaning is the major driver of gut microbiota variation in piglets with different levels of overall growth performance. This calls for further research to verify if promotion of specific gut microbiota, identified here at weaning transition, is beneficial for piglet growth. IMPORTANCE The relationship between pigs' intestinal microbiota and growth performance is of great importance for improving piglets' health and reducing antimicrobial use. We found that gut microbiota variation is significantly associated with growth during weaning and the early nursery period. Importantly, transitions toward a mature gut microbiota enriched with fiber-degrading bacteria mostly complete upon weaning in piglets with better growth. Postponing the weaning age may therefore favor the development of fiber degrading gut bacteria, conferring the necessary capacity to digest and harvest solid postweaning feed. The bacterial taxa associated with piglet growth identified herein hold potential to improve piglet growth and health.


Assuntos
Microbioma Gastrointestinal , Suínos , Animais , Feminino , Desmame , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Bactérias/genética , Fezes/microbiologia
10.
Diabetologia ; 66(5): 913-930, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36692509

RESUMO

AIMS/HYPOTHESIS: The mitochondrial chaperonin heat shock protein (HSP) 60 is indispensable in protein folding and the mitochondrial stress response; however, its role in nutrient metabolism remains uncertain. This study investigated the role of HSP60 in diet-induced non-alcoholic fatty liver disease (NAFLD). METHODS: We studied human biopsies from individuals with NAFLD, murine high-fat-diet (HFD; a diet with 60% energy from fat)-induced obesity (DIO), transgenic (Tg) mice overexpressing Hsp60 (Hsp60-Tg), and human HepG2 cells transfected with HSP60 cDNA or with HSP60 siRNA. Histomorphometry was used to assess hepatic steatosis, biochemistry kits were used to measure insulin resistance and glucose tolerance, and an automated home cage phenotyping system was used to assess energy expenditure. Body fat was assessed using MRI. Macrophage infiltration, the lipid oxidation marker 4-hydroxy-2-nonenal (4-HNE) and the oxidative damage marker 8-hydroxy-2'-deoxyguanosine (8-OHdG) were detected using immunohistochemistry. Intracellular lipid droplets were evaluated by Nile red staining. Expression of HSP60, and markers of lipogenesis and fatty acid oxidation were quantified using RT-PCR and immunoblotting. Investigations were analysed using the two-way ANOVA test. RESULTS: Decreased HSP60 expression correlated with severe steatosis in human NAFLD biopsies and murine DIO. Hsp60-Tg mice developed less body fat, had reduced serum triglyceride levels, lower levels of insulin resistance and higher serum adiponectin levels than wild-type mice upon HFD feeding. Respiratory quotient profile indicated that fat in Hsp60-Tg mice may be metabolised to meet energy demands. Hsp60-Tg mice showed amelioration of HFD-mediated hepatic steatosis, M1/M2 macrophage dysregulation, and 4-HNE and 8-OHdG overproduction. Forced HSP60 expression reduced the mitochondrial unfolded protein response, while preserving mitochondrial respiratory complex activity and enhancing fatty acid oxidation. Furthermore, HSP60 knockdown enhanced intracellular lipid formation and loss of sirtuin 3 (SIRT3) signalling in HepG2 cells upon incubation with palmitic acid (PA). Forced HSP60 expression improved SIRT3 signalling and repressed PA-mediated intracellular lipid formation. SIRT3 inhibition compromised HSP60-induced promotion of AMP-activated protein kinase (AMPK) phosphorylation and peroxisome proliferator-activated receptor α (PPARα levels), while also decreasing levels of fatty acid oxidation markers. CONCLUSION/INTERPRETATION: Mitochondrial HSP60 promotes fatty acid oxidation while repressing mitochondrial stress and inflammation to ameliorate the development of NAFLD by preserving SIRT3 signalling. This study reveals the hepatoprotective effects of HSP60 and indicates that HSP60 could play a fundamental role in the development of therapeutics for NAFLD or type 2 diabetes.


Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Sirtuína 3 , Animais , Humanos , Camundongos , Diabetes Mellitus Tipo 2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Ácidos Graxos/metabolismo , Resistência à Insulina/genética , Metabolismo dos Lipídeos , Lipídeos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo , Sirtuína 3/genética , Sirtuína 3/metabolismo
11.
Int J Mol Sci ; 24(2)2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36675163

RESUMO

Neuroblastoma (NB) is characterized by several malignant phenotypes that are difficult to treat effectively without combination therapy. The therapeutic implication of mitochondrial ClpXP protease ClpP and ClpX has been verified in several malignancies, but is unknown in NB. Firstly, we observed a significant increase in ClpP and ClpX expression in immature and mature ganglion cells as compared to more malignant neuroblasts and less malignant Schwannian-stroma-dominant cell types in human neuroblastoma tissues. We used ONC201 targeting ClpXP to treat NB cells, and found a significant suppression of mitochondrial protease, i.e., ClpP and ClpX, expression and downregulation of mitochondrial respiratory chain subunits SDHB and NDUFS1. The latter was associated with a state of energy depletion, increased reactive oxygen species, and decreased mitochondrial membrane potential, consequently promoting apoptosis and suppressing cell growth of NB. Treatment of NB cells with ONC201 as well as the genetic attenuation of ClpP and ClpX through specific short interfering RNA (siRNA) resulted in the significant upregulation of the tumor suppressor alpha thalassemia/mental retardation X-linked (ATRX) and promotion of neurite outgrowth, implicating mitochondrial ClpXP proteases in MYCN-amplified NB cell differentiation. Furthermore, ONC201 treatment significantly decreased MYCN protein expression and suppressed tumor formation with the reactivation of ATRX expression in MYCN-amplified NB-cell-derived xenograft tumors. Taken together, ONC201 could be the potential agent to provide diversified therapeutic application in NB, particularly in NB with MYCN amplification.


Assuntos
Deficiência Intelectual , Neuroblastoma , Talassemia alfa , Humanos , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Linhagem Celular Tumoral , Deficiência Intelectual/genética , Talassemia alfa/genética , Neuroblastoma/metabolismo , Mitocôndrias/metabolismo , Peptídeo Hidrolases/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteína Nuclear Ligada ao X/genética , Proteína Nuclear Ligada ao X/metabolismo
12.
Gut Microbes ; 14(1): 2152307, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36448728

RESUMO

Obesity is a major risk factor for the development of type 2 diabetes and cardiovascular diseases, and gut microbiota plays a key role in influencing the host energy homeostasis. Moreover, obese mice have a different gut microbiota composition, associated with an alteration of the intestinal mucus layer, which represents the interface between the bacteria and the host. We previously demonstrated that prebiotic treatment with oligofructose (FOS) counteracted the effects of diet-induced obesity, together with changes in the gut microbiota composition, but it is not known if the intestinal mucus layer could be involved. In this study, we found that, in addition to preventing high-fat diet (HFD) induced obesity in mice, the treatment with FOS increased the expression of numerous genes involved in mucus production, glycosylation and secretion, the expression of both secreted and transmembrane mucins, and the differentiation and number of goblet cells. These results were associated with significant changes in the gut microbiota composition, with FOS significantly increasing the relative and absolute abundance of the bacterial genera Odoribacter, Akkermansia, two unknown Muribaculaceae and an unknown Ruminococcaceae. Interestingly, all these bacterial genera had a negative association with metabolic parameters and a positive association with markers of the mucus layer. Our study shows that FOS treatment is able to prevent HFD-induced metabolic disorders, at least in part, by acting on all the processes of the mucus production. These data suggest that targeting the mucus and the gut microbiota by using prebiotics could help to prevent or mitigate obesity and related disorders.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Camundongos , Animais , Prebióticos , Dieta Hiperlipídica/efeitos adversos , Glicosilação , Obesidade/prevenção & controle , Bacteroidetes , Muco
13.
Gut Microbes ; 14(1): 2142009, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36322821

RESUMO

Biogeographic variations in the gut microbiota are pivotal to understanding the global pattern of host-microbiota interactions in prevalent lifestyle-related diseases. Pakistani adults, having an exceptionally high prevalence of type 2 diabetes mellitus (T2D), are one of the most understudied populations in microbiota research to date. The aim of the present study is to examine the gut microbiota across individuals from Pakistan and other populations of non-industrialized and industrialized lifestyles with a focus on T2D. The fecal samples from 94 urban-dwelling Pakistani adults with and without T2D were profiled by bacterial 16S ribosomal RNA gene and fungal internal transcribed spacer (ITS) region amplicon sequencing and eubacterial qPCR, and plasma samples quantified for circulating levels of lipopolysaccharide-binding protein (LBP) and the activation ability of Toll-like receptor (TLR)-signaling. Publicly available datasets generated with comparable molecular methods were retrieved for comparative analysis of the bacterial microbiota. Overall, urbanized Pakistanis' gut microbiota was similar to that of transitional or non-industrialized populations, depleted in Akkermansiaceae and enriched in Prevotellaceae (dominated by the non-Westernized clades of Prevotella copri). The relatively high proportion of Atopobiaceae appeared to be a unique characteristic of the Pakistani gut microbiota. The Pakistanis with T2D had elevated levels of LBP and TLR-signaling in circulation as well as gut microbial signatures atypical of other populations, e.g., increased relative abundance of Libanicoccus/Parolsenella, limiting the inter-population extrapolation of gut microbiota-based classifiers for T2D. Taken together, our findings call for a more global representation of understudied populations to extend the applicability of microbiota-based diagnostics and therapeutics.


Assuntos
Actinobacteria , Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Microbiota , Adulto , Humanos , Microbioma Gastrointestinal/genética , Diabetes Mellitus Tipo 2/microbiologia , Paquistão , RNA Ribossômico 16S/genética , Bactérias/genética , Actinobacteria/genética
14.
NPJ Sci Food ; 6(1): 49, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36307422

RESUMO

Bread as a staple food has been predominantly prepared from refined wheat flour. The world's demand for food is rising with increased bread consumption in developing countries where climate conditions are unsuitable for wheat cultivation. This reliance on wheat increases the vulnerability to wheat supply shocks caused by force majeure or man-made events, in addition to negative environmental and health consequences. In this review, we discuss the contribution to the sustainability of food systems by partially replacing wheat flour with various types of plant ingredients in bread making, also known as composite bread. The sustainable sources of non-wheat flours, their example use in bread making and potential health and nutritional benefits are summarized. Non-wheat flours pose techno-functional challenges due to significantly different properties of their proteins compared to wheat gluten, and they often contain off-favor compounds that altogether limit the consumer acceptability of final bread products. Therefore, we detail recent advances in processing strategies to improve the sensory and nutritional profiles of composite bread. A special focus is laid on fermentation, for its accessibility and versatility to apply to different ingredients and scenarios. Finally, we outline research needs that require the synergism between sustainability science, human nutrition, microbiomics and food science.

15.
J Biol Chem ; 298(10): 102442, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36055405

RESUMO

Leukocyte cell-derived chemotaxin 2 (LECT2) acts as a tumor suppressor in hepatocellular carcinoma (HCC). However, the antineoplastic mechanism of LECT2, especially its influence on hepatic cancer stem cells (CSCs), remains largely unknown. In The Cancer Genome Atlas cohort, LECT2 mRNA expression was shown to be associated with stage, grade, recurrence, and overall survival in human HCC patients, and LECT2 expression was downregulated in hepatoma tissues compared with the adjacent nontumoral liver. Here, we show by immunofluorescence and immunoblot analyses that LECT2 was expressed at lower levels in tumors and in poorly differentiated HCC cell lines. Using functional assays, we also found LECT2 was capable of suppressing oncogenic behaviors such as cell proliferation, anchorage-independent growth, migration, invasiveness, and epithelial-mesenchymal transition in hepatoma cells. Moreover, we show exogenous LECT2 treatment inhibited CSC functions such as tumor sphere formation and drug efflux. Simultaneously, hepatic CSC marker expression was also downregulated, including expression of CD133 and CD44. This was supported by infection with adenovirus encoding LECT2 (Ad-LECT2) in HCC cells. Furthermore, in animal experiments, Ad-LECT2 gene therapy showed potent efficacy in treating HCC. We demonstrate LECT2 overexpression significantly promoted cell apoptosis and reduced neovascularization/CSC expansion in rat hepatoma tissues. Mechanistically, we showed using immunoblot and immunofluorescence analyses that LECT2 inhibited ß-catenin signaling via the suppression of the hepatocyte growth factor/c-MET axis to diminish CSC properties in HCC cells. In summary, we reveal novel functions of LECT2 in the suppression of hepatic CSCs, suggesting a potential alternative strategy for HCC therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/terapia , Linhagem Celular Tumoral , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/uso terapêutico , Neoplasias Hepáticas/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Ratos , Terapia Genética
16.
Gut Microbes ; 14(1): 2095775, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36174236

RESUMO

Birth mode and maternal intrapartum (IP) antibiotics affect infants' gut microbiota development, but their relative contribution to absolute bacterial abundances and infant health has not been studied. We compared the effects of Cesarean section (CS) delivery and IP antibiotics on infant gut microbiota development and well-being over the first year. We focused on 92 healthy infants born between gestational weeks 37-42 vaginally without antibiotics (N = 26), with IP penicillin (N = 13) or cephalosporin (N = 7) or by CS with IP cephalosporin (N = 33) or other antibiotics (N = 13). Composition and temporal development analysis of the gut microbiota concentrated on 5 time points during the first year of life using 16S rRNA gene amplicon sequencing, integrated with qPCR to obtain absolute abundance estimates. A mediation analysis was carried out to identify taxa linked to gastrointestinal function and discomfort (crying, defecation frequency, and signs of gastrointestinal symptoms), and birth interventions. Based on absolute abundance estimates, the depletion of Bacteroides spp. was found specifically in CS birth, while decreased bifidobacteria and increased Bacilli were common in CS birth and exposure to IP antibiotics in vaginal delivery. The abundances of numerous taxa differed between the birth modes among cephalosporin-exposed infants. Penicillin had a milder impact on the infant gut microbiota than cephalosporin. CS birth and maternal IP antibiotics had both specific and overlapping effects on infants' gut microbiota development. The resulting deviations in the gut microbiota are associated with increased defecation rate, flatulence, perceived stomach pain, and intensity of crying in infancy.


Assuntos
Microbioma Gastrointestinal , Antibacterianos/farmacologia , Cefalosporinas , Cesárea , Feminino , Humanos , Lactente , Monobactamas , Penicilinas , Gravidez , RNA Ribossômico 16S/genética
17.
Front Microbiol ; 13: 848128, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35495638

RESUMO

Commercially available ELISAs for zonulin (pre-haptoglobin 2), a protein with tight junction regulatory activity in the epithelia, were recently shown to recognize other proteins that are structurally and functionally related to zonulin, termed zonulin family peptides (ZFPs). With little or no information about the identity and property of ZFPs, various commercial zonulin ELISA kits are widely utilized in research as a marker of intestinal permeability. Bacterial exposure is a known trigger for the secretion of zonulin, but it remains unclear whether distinct bacteria differ in their capability to stimulate zonulin secretion. We hypothesized that ZFPs are similar to zonulin regarding response to bacterial exposure and aimed to compare the effects of non-pathogenic, Gram-negative bacteria (Escherichia coli RY13 and E. coli K12 DH5α) and probiotic, Gram-positive bacteria (Lactobacillus rhamnosus GG and Bifidobacterium bifidum) on ZFP secretion in an in vitro model. Additionally, utilizing samples from human clinical trials, we correlated circulating levels of ZFPs to the gut bacteria and determined the presence of ZFPs in various human tissues. Unexpectedly, we found that the ZFPs quantified by the widely used IDK® Zonulin ELISA kits are specifically triggered by the exposure to live Lactobacillus rhamnosus GG in HT-29 cells, associated with absolute abundances of intestinal Lactobacillus and Bifidobacterium in adults, and are copious in the small intestine but undetectable in the liver or adipose tissue. These characteristics appear to be different from zonulin and highlight the need for further characterization of ZFPs recognized by commercially available and widely used "zonulin" ELISAs.

18.
Genome Med ; 14(1): 54, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35599315

RESUMO

BACKGROUND: Low-energy diets (LEDs) comprise commercially formulated food products that provide between 800 and 1200 kcal/day (3.3-5 MJ/day) to aid body weight loss. Recent small-scale studies suggest that LEDs are associated with marked changes in the gut microbiota that may modify the effect of the LED on host metabolism and weight loss. We investigated how the gut microbiota changed during 8 weeks of total meal replacement LED and determined their associations with host response in a sub-analysis of 211 overweight adults with pre-diabetes participating in the large multicentre PREVIEW (PREVention of diabetes through lifestyle intervention and population studies In Europe and around the World) clinical trial. METHODS: Microbial community composition was analysed by Illumina sequencing of the hypervariable V3-V4 regions of the 16S ribosomal RNA (rRNA) gene. Butyrate production capacity was estimated by qPCR targeting the butyryl-CoA:acetate CoA-transferase gene. Bioinformatics and statistical analyses, such as comparison of alpha and beta diversity measures, correlative and differential abundances analysis, were undertaken on the 16S rRNA gene sequences of 211 paired (pre- and post-LED) samples as well as their integration with the clinical, biomedical and dietary datasets for predictive modelling. RESULTS: The overall composition of the gut microbiota changed markedly and consistently from pre- to post-LED (P = 0.001), along with increased richness and diversity (both P < 0.001). Following the intervention, the relative abundance of several genera previously associated with metabolic improvements (e.g., Akkermansia and Christensenellaceae R-7 group) was significantly increased (P < 0.001), while flagellated Pseudobutyrivibrio, acetogenic Blautia and Bifidobacterium spp. were decreased (all P < 0.001). Butyrate production capacity was reduced (P < 0.001). The changes in microbiota composition and predicted functions were significantly associated with body weight loss (P < 0.05). Baseline gut microbiota features were able to explain ~25% of variation in total body fat change (post-pre-LED). CONCLUSIONS: The gut microbiota and individual taxa were significantly influenced by the LED intervention and correlated with changes in total body fat and body weight in individuals with overweight and pre-diabetes. Despite inter-individual variation, the baseline gut microbiota was a strong predictor of total body fat change during the energy restriction period. TRIAL REGISTRATION: The PREVIEW trial was prospectively registered at ClinicalTrials.gov ( NCT01777893 ) on January 29, 2013.


Assuntos
Microbioma Gastrointestinal , Estado Pré-Diabético , Tecido Adiposo/metabolismo , Adulto , Butiratos/farmacologia , Dieta , Fezes/microbiologia , Humanos , Sobrepeso/metabolismo , RNA Ribossômico 16S/genética , Redução de Peso
19.
Food Funct ; 13(8): 4770, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35380149

RESUMO

Correction for 'Gut microbiota can utilize prebiotic birch glucuronoxylan in production of short-chain fatty acids in rats' by Emma Kynkäänniemi et al., Food Funct., 2022, 13, 3746-3759, DOI: 10.1039/D1FO03922A.

20.
Food Funct ; 13(6): 3746-3759, 2022 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-35266930

RESUMO

Birch-derived glucuronoxylan (GX)-rich hemicellulose extract is an abundantly available by-product of the forest industry. It has multifunctional food stabilizing properties, and is rich in fiber and polyphenols. Here, we studied its effects on colonic metabolism and gut microbiota in healthy rats. Male and female Wistar rats (n = 42) were fed AIN-93G-based diets with 10% (w/w) of either cellulose (control), a polyphenol and GX-rich extract (GXpoly), or a highly purified GX-rich extract (pureGX) for four weeks. Both the GXpoly and pureGX diets resulted in changes on the gut microbiota, especially in a higher abundance of Bifidobacteriaceae than the cellulose containing diet (p < 0.001). This coincided with higher concentrations of microbial metabolites in the luminal contents of the GX-fed than control rats, such as total short-chain fatty acids (SCFAs) (p < 0.001), acetate (p < 0.001), and N-nitroso compounds (NOCs) (p = 0.001). The difference in the concentration of NOCs was not seen when adjusted with fecal weight. GX supplementation supported the normal growth of the rats. Our results indicate that GXpoly and pureGX can favorably affect colonic metabolism and the gut microbiota. They have high potential to be used as prebiotic stabilizers to support more ecologically sustainable food production.


Assuntos
Microbioma Gastrointestinal , Animais , Betula/metabolismo , Ácidos Graxos Voláteis/metabolismo , Feminino , Masculino , Prebióticos , Ratos , Ratos Wistar , Xilanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA